The automatic colorization of anime line drawings is a challenging problem in production pipelines. Recent advances in deep neural networks have addressed this problem; however, collecting many images of colorization targets in novel anime work before the colorization process starts leads to chicken-and-egg problems and has become an obstacle to using them in production pipelines. To overcome this obstacle, we propose a new patch-based learning method for few-shot anime-style colorization. The learning method adopts an efficient patch sampling technique with position embedding according to the characteristics of anime line drawings. We also present a continual learning strategy that continuously updates our colorization model using new samples colorized by human artists. The advantage of our method is that it can learn our colorization model from scratch or pre-trained weights only using a few pre- and post-colorized line drawings that are created by artists in their usual colorization work. Therefore, our method can be easily implemented into existing production pipelines. We demonstrated that our colorization method outperformed state-of-the-art methods using a quantitative evaluation.
To demonstrate the effectiveness of our method, we colorized the line drawings from all shots from our hand-drawn dataset using following methods, and then compared colorization accuracy for all methods. We used mean Intersection-over-Union (mIoU) and region-wise accuracy (Region-wise Acc.) as an accuracy criterion. Our method is simple to implement however achieves state-of-the-art colorization accuracy.
In each video below, images surrounded by dashed blue boxes represent reference frames used and were not counted in the evaluation. Also, the magenta pixels indicate the incorrect prediction compared with manual work.
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 24.66 | 8.73 | 46.44 | 61.03 | 53.08 | 71.59 |
Region-wise Acc. [%] | 29.14 | 9.75 | 48.65 | 69.37 | 62.01 | 69.64 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 38.28 | 12.61 | 57.76 | 64.91 | 59.37 | 67.10 |
Region-wise Acc. [%] | 33.41 | 7.36 | 44.79 | 59.17 | 58.76 | 60.34 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 22.61 | 16.85 | 57.73 | 64.64 | 65.99 | 77.20 |
Region-wise Acc. [%] | 24.13 | 10.94 | 60.82 | 77.15 | 68.31 | 69.46 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 29.63 | 23.51 | 68.23 | 72.61 | 61.21 | 83.14 |
Region-wise Acc. [%] | 30.03 | 27.13 | 58.15 | 69.64 | 73.30 | 77.80 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 41.39 | 25.07 | 78.52 | 72.05 | 84.12 | 80.84 |
Region-wise Acc. [%] | 39.66 | 34.51 | 69.47 | 80.91 | 76.07 | 75.50 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 18.48 | 10.38 | 63.67 | 70.45 | 71.54 | 74.72 |
Region-wise Acc. [%] | 24.32 | 16.01 | 54.35 | 66.60 | 68.34 | 72.31 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 33.38 | 22.01 | 73.70 | 79.40 | 83.62 | 87.74 |
Region-wise Acc. [%] | 36.22 | 32.84 | 70.71 | 66.98 | 73.82 | 77.80 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 40.46 | 19.02 | 71.99 | 76.91 | 76.82 | 78.30 |
Region-wise Acc. [%] | 37.03 | 19.37 | 67.41 | 73.58 | 70.44 | 72.27 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 31.87 | 26.93 | 61.86 | 63.98 | 56.99 | 68.39 |
Region-wise Acc. [%] | 35.26 | 27.97 | 51.90 | 55.01 | 47.32 | 55.48 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 21.65 | 17.91 | 78.87 | 72.86 | 81.37 | 80.52 |
Region-wise Acc. [%] | 10.64 | 8.86 | 46.45 | 64.31 | 46.83 | 46.37 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 55.63 | 30.38 | 87.41 | 86.58 | 88.37 | 92.13 |
Region-wise Acc. [%] | 43.24 | 30.71 | 78.67 | 76.43 | 78.24 | 82.26 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 62.86 | 46.98 | 94.24 | 91.57 | 97.74 | 98.11 |
Region-wise Acc. [%] | 41.34 | 33.06 | 71.76 | 88.71 | 86.99 | 86.06 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 42.64 | 33.90 | 88.92 | 86.25 | 74.11 | 75.38 |
Region-wise Acc. [%] | 34.54 | 21.66 | 74.76 | 70.97 | 74.32 | 71.97 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 33.06 | 26.91 | 71.02 | 73.04 | 74.55 | 83.16 |
Region-wise Acc. [%] | 16.72 | 13.80 | 60.40 | 73.07 | 65.12 | 73.49 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 29.65 | 36.39 | 83.11 | 89.94 | 84.22 | 89.98 |
Region-wise Acc. [%] | 25.97 | 17.89 | 59.91 | 78.84 | 69.65 | 73.25 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 62.44 | 63.92 | 92.46 | 92.46 | 92.11 | 92.01 |
Region-wise Acc. [%] | 70.09 | 66.89 | 91.39 | 85.07 | 88.82 | 88.87 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 65.22 | 53.39 | 87.38 | 92.51 | 93.27 | 94.18 |
Region-wise Acc. [%] | 54.25 | 44.11 | 78.29 | 85.83 | 85.61 | 85.21 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 51.26 | 46.42 | 89.63 | 94.25 | 93.23 | 93.60 |
Region-wise Acc. [%] | 31.31 | 23.93 | 73.74 | 82.53 | 74.82 | 76.25 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 20.21 | 18.05 | 52.85 | 47.17 | 79.15 | 80.66 |
Region-wise Acc. [%] | 17.68 | 14.72 | 42.39 | 42.88 | 64.21 | 65.41 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 21.76 | 8.29 | 69.01 | 73.58 | 45.24 | 47.56 |
Region-wise Acc. [%] | 18.90 | 10.54 | 61.13 | 69.38 | 46.02 | 45.54 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 22.99 | 7.43 | 49.34 | 53.73 | 57.74 | 65.01 |
Region-wise Acc. [%] | 24.45 | 10.03 | 48.49 | 55.47 | 60.17 | 66.79 |
Metric | SGA /w f. t. [Li+ 2022] |
LAVC /w f. t. [Shi+ 2023] |
Cadmium App [Casey+ 2021] |
Inclusion Matching [Li+ 2024] |
Ours from scratch |
Ours |
---|---|---|---|---|---|---|
mIoU [%] | 49.94 | 40.51 | 58.90 | 54.93 | 78.75 | 82.55 |
Region-wise Acc. [%] | 37.80 | 34.81 | 56.99 | 64.33 | 62.03 | 68.44 |
@article{cfplac_2024,
title={Continual few-shot patch-based learning for anime-style colorization},
volume={},
ISSN={2096-0662},
url={https://doi.org/10.1007/s41095-024-0414-4},
DOI={10.1007/s41095-024-0414-4},
number={},
journal={Comp. Visual Media (2024)},
publisher={Springer Science and Business Media LLC},
author={Maejima, Akinobu and Shinagawa, Seitaro and Kubo, Hiroyuki and Funatomi, Takuya and Yotsukura, Tatsuo and Nakamura, Satoshi, and Mukaigawa, Yasuhiro},
year={2024},
month=july,
pages={} }